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Exact Solutions for the Fluctuations in a Flat FRW
Universe Coupled to a Scalar Field

M. Castagnino»* J. Chavarria,? L. Lara, 3
and M. Grau?
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Some exact solutions for the small-first-order perturbations of an FRW metric minimally
coupled to a neutral massive scalar field are presented.
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1. INTRODUCTION

Since the early days of general relativity exact solutions have been extremely
important in the development of this theory. Besides, in the last decade the study of
fluctuations of homogeneous cosmological models has become utmost important
for the global comprehension of the universe. In this paper, coupling both ideas,
we begin the search of an exact solution for the equations of these fluctuations.

This paper is organized as follows.

In Section 2, we introduce our model: fluctuation in a flat FRW universe
with n minimally coupled massless scalar fields with constant potential (namely a
cosmological constant). We use the equations from the papers by Mukésalov
(1992), Zibinet al. (2001), and Greenet al. (1997).

In Section 3, we develop our calculations and find the solution for the back-
ground equations for the ca¥e= V, = const.

In Section 4, we consider the fluctuation equations and find a new way to
write these equations. Then in Subsection 4.1 we find an exact equation for the
case&k = 0,and in Section 4.2 we consider the cksé 0 and find an exact equation
for the casé/y = 0 and asymptotic solutions for the caég+ 0.

In Section 5, we draw our main conclusion.
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2. THE MODEL
Our metric is the flatK = 0) FRW metric:
ds? = dt? —a(t)? (dx® + dy? + d7), 1)

wheret is the proper time and(t) is the scalar factor.
The Lagrangian density of the systemdswhich corresponds to neutral

massless scalar fielgs, minimally coupled, with potentiaV (¢4, . . ., ¢n):

L =L+ Lwm, ()
whereLg = —%2 R is the gravitational Lagrangian densit (s the Ricci scalar)
and

. 1 n 1 2
Ly = ; —50u010" ¢ + SROT ) + V(WL i) €)

is the matter Lagrangian density. The Ricci scalar is related to the scale &actor

by the equation
R a /a\°
— == —. 4
6 a + <a> “)

The background equations are the Klein—Gordon equations for each field:

. . oV

i +3Hp;+—=0, i=1,...,n, 5
di+3H; + 50 =0, | n (5)

whereH = a/a, and the Hamiltonian constraint:

8 n 1 -2

2

=—_ [V s

H 3, ( +;2¢|>, (6)
The perturbed metric reads

ds? = (1 — 2®) dt? — a(t)’(1 + 2®)(dx? + dy? + d7), (7)

while the field perturbations af; are symbolized as¢;. Then, thek Fourier

transform of the equations for the perturbations is given in Mukhahal;(1992)
and Zibinet al. (2001):

. k? ) NIy .2 9V

BHO + [ — +3H? | == i8¢y — ®pT + —8¢i |, 8

t (o) = 2 (hod - 0it e o). @

) [y WLLE
<I>+H<I>=7;¢i8¢i, %)
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2

6¢,+3H8¢,+Za¢\8/¢ 8¢ = 4D — §—Z¢—%5¢i, i=1,2,...,n
i0Pj i

(10)

where- = d( )/dt andi = 8z/3m?,.

3. THE EXACT SOLUTION FOR V, A CONSTANT

In this paper we will only be interested in the study of the cdse V, with
Vo > 0 (Cornish and Levin, 1996; Easther and Maeda, 1999). In this case, Eq. (5)
becomes

¢, +3Hp, =0, i=1,2,...,n, (11)
H2=A(VO+}XH:¢'>3>, (12)
2{H
from which we deducé, /¢; = ¢,/¢,; therefore,
o =cCoi+d, i=23,...,n (13)
with ¢, di being constants. Using Egs. (12) and (13) we obtain
H2 = (Vo + c%67), (14)
wherec? = (1 + > ,c?)/2.

Taking (11) and (14) into account, we write

1 ¢
Vi=f-— 21 (15)
3 </31\/ szlsi +Vo

On the other hand, sindé = a/a and by Eq. (11) for = 1, we have
C1

1= 23’ (16)
with ¢; being a certain constant.
3.1. CaseVy#0
In this case, the scale factor is obtained from Egs. (15) and (16):
3 G o 2y .0
a’(t) = ——(e " —c\per), 17
O = 5 0e?) (7

with Q = F3/AVp(t — to).
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Sincec > 0 and we have assumed thgt> 0, we may consider the constant
y =Inc+ 1 InVy; so,

a3(t) = —% Sinh@ + 7).

Using Egs. (16) and (17) and as we have assumedyhat 0, after some
algebraic calculations we deduce that

. 2Ver
1= T v, (18)
and
1 1+CJVO>
t) = In + a, 19
) = o (1—0«/vo " (19)

wherew is an integration constant.

3.2. CaseVg =0
In this case, the scale factor is obtained from Egs. (15) and (16):
a(t) = + 3c; cVA(t — to).
From Egs. (16) and (17) we get

$1(t) = £

! In(t —to) +
_ a,
3¢V 0
wherex is a constant.
4. THE PERTURBED SYSTEM SOLUTION

In the caseV =V, following the work of Mukhano\et al. (1992), we use
Egs. (8), (9), and (10) to get

2
5¢'§i+3Haq'>i=4ci>q'>i—%5¢i, i=1,2...,n, (20)
: 3
¢+Hq>=7;¢ia¢i, (21)
. k2 KRN 2
3H® + <? +3H2> = —7;(@5% — ®¢;), (22)

wherek = 27/1, | being the wavelength. From Egs. (13) and (16), we deduce

%, i—1,2,...n, (23)

b =
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with ki constants beinky = ¢; andk; = ¢;¢j,i = 2, 3,..., n. Therefore Egs. (20),
(21), and (22) become

. k K2
8¢, + §8¢, _4q> 25¢i, i=1,2,...,n, (24)
. a 3
b+ -0 = 22_: o, (25)
a. k? Mk K
3 +<a2+3 ) > i:l(a3 9 — 5 ) (26)
From Egs. (12) and (23) we obtain
A2
H=+VA = Vo (27)

whereA? = c2c? andc is the same as before.
Taking Eg. (27) into account we get

2 6
a= YAt
a
and
—2A% + Vpa®
ad '
Sincea(t) is a monotonic function, we consider the change- z to the

new independent variabe= a(t), and writing' = d/dz we have Egs. (24), (25),
and (26):

228 + 3VA(A2 + VoZB)8¢ = 4k @' — K?z8¢, 1 =1,2,...,n, (28)
31
VAMAZ + V28D + 2P’ = Z kiS¢, (29)

31
3VA(A? + VpZ8) D' + BV + K2Z* + 3A%) = > Z k?d — ki8¢ .
i=1

(30)

LetS(2) = Zi"zl ki 8¢; . Multiplying each of then equations of (28) bl and
adding all of them, we get

S + 3/M(A? + Vp25)S = 8A2D' —k?zS (31)
VMAZ + Vo) ® + 22" = 25, (32)

3VA(AZ + VoZ®) 2 + 3aVoZ® + K224 + 3A%L = 2 (°S + 2A%9).  (33)
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Now we will perform two steps.
First, equatingd(z) from (31) and (32) we get

AZ2(A? + Vp2®)2S"(2) 4+ 20.2( A% 4 Vo Z®)(2A% + 5Vp2°) S (2)
+ (= 10A*x + APKPZ* + 19AZA V28 + k*Voz!0 + 200V§Z'?)S(2)  (34)
+ Z2(5A%K? + 36A%AVoZ? + 2k?VpZ®)S(2) = 0.

We consider the functional chan@z) — p(x) being S(x) = /a2 + Voz8p(2),
and we have

U := AZ%(A% + Vo) p"(2) + 22(4A% + 1VoZ%) P (2)
+(—10A%% + k22 + 98,V 2°) p'(2) + Z2(5K? + 126\VoZ2) p(2) = O.
Second, equating(z) from (32) and (33) we get
Az(—3A%) + K2Z*)(A? + VpZ®)S'(2)
+A(—=15A% + AK2Z* — 24A20VoZ® 4 4k?VpZ9) S (2) (36)
+73(—15A%k?x — 36A%12VyZ? + k*2*)S(2) = 0.
By the functional chang&(z) = /a2 + Voz®p(z) we have
W := az(—3A% + K22 (A? + V22 p'(2)
+A(—15A%. + A%KPZ* — 42A20VpZ8 + 10k*VZH%) p'(2) (37)
+Z23(—15A%k%L — 126A%22VpZ? + k*Z* + 18k2A Vo) p(2) = 0.

From Egs. (36) and (37) we dedude= 1/k?z* — 31 A%(z LW — 2W), and we
conclude that it = 0, then all Egs. (20), (21), and (22) are verified. From now
on we will use Eq (35) with the) just defined and the last equation with = 0.
With these changes the last three equations will be our system of equations.

(35)

4.1. Cas&k =0
We want to solve Eq. (36) for the cake= 0; so
2(A% 4+ VpZ%)S'(2) + (5A% + 8Vp®)S(2) + 12Vp2°S(2) = 0. (38)

We see thaz~ is a particular solution for (38). Let us consider the functional
changeS(2) = q(z)z* in (38) and we get

2(A? 4+ VpZ%)q"(2) — 3A%q'(2) = 0.

Integrating,
C123 z S3
d@=——— q@®»=C f ——_ds+GCy,
Ny Yo VAT VosS ?
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whereC; andC, are arbitrary constants. Therefore,

1 z s
z:—C/7d8+C
2 z“(lsOJm 2)

and

Vi Vi
®(2) = —W\/ AZ + VoZ89(2) + Clﬁ.
We recall the change on the independent variable already made:

c
2—\/0(e‘Q — 2V eh),

And since e 4 c?Vpe? = 2c/Vp cosh 1) and e @ — c?Vpe? = —2c/ V)
sinh (1), we get

_Va 2c\/Vp cosh@y) [ , 13
20 = 2|~ s v a2 e o)

Z=at) =

2¢/Vp cosh2) } (39)
*3(2c/Vp sinh(@y))%3 |’
whereQ; = Q 4+ y = F3J/AVp(t — ty).
4.2. Cas&k #0
We want to solve Egs. (31), (32), and (33), and we eq8@tefrom (32). We
have
S2) = VAZ 4+ Vo8 (20 + 2z9')
B 3V '

We substitute this value in (31) and (33) and we obtain
Uy 1 = (2 A2 + Vo8 (KPZ2D(2) + 182D (2) — 10A2A D' (2) + K2Z*D'(2)
+ 38\ 2D/ (2) 4+ 4A%A2D"(2) + 130VpZ' D" (2) + A’AZ2D"(2)
+ Vo229 (2))/(3VAZ%) = 0,
Wi @ = (K*Z2D(2) + 6LV D(2) + 5AZAD'(2) + 8AVpZ° D' (2)
+ A%1z0"(2) + Aoz’ @"(2))(2D°) = O.

It is easy to see that
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Therefore, the only equation to be solvedAg = 0. We first consider the case
whenV, = 0 and afterwards whev # 0.
If Vo =0, we have

A2)\zd"(Z) + 5A2LD'(2) + k*Z2D = 0. (40)

We writek = k/(Av/2). We consider the change of varialle= \/2x/k and the
functional chang&(x) = x®(x) and the equation obtained is

, dG dG
dx2+xd_+(x_1)G_o (41)

The exact solution of Eq. (41) i6(x) = C3J1(X) + CyY1(x), whereC; andCy

are arbitrary constants arld andY; are the corresponding Bessel functions with
index 1. [See Abramowitz and Stegun (1965) for further information about Bessel
functions.] Going back through the changes, we deduce

o(2) = % (C331(n) + CyYVa(n)). (42)

wheren = kZ2/2AV/A.
If Vo # 0, we haval = 0, and by the changes= A2/3V0_1/3X andk—3 =
k3 AVpr%? we get
4x(1 + x3)@"(x) + 6(24 3x%) @’ (x) + (kX + 6x2)D(X) = 0. (43)

If x> 1, then

D(x) ~ C—j_

d(x) =~ 8Ii< (clKl <%kxi> + 2l (%kxi)) ,

wherei2 = —1 andc;, ¢, are constants.

If x > 1, then

5. CONCLUSIONS

We have found exact solutions for the cakes 0 andk # 0, Vy = 0, and
asymptotic exact solutions for the cdset 0, Vy # 0. Then the exact solution for
the general cade+ 0, Vo # 0 is not very far and will be treated elsewhere. There
we will face more general potentials in trying to find exact solutions or perturbing
these exact solutions to shed more light on the fluctuation problems.
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